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Foam analogy in charged colloidal crystals
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We model charged colloidal suspensions using an analogy with foams. We study the solid-solid phase
transitions of these systems as a function of particle volume fraction and ionic strength. The screened-Coulomb
interaction is replaced by an interaction between walls of the Voronoi cells around each particle. We fit the
surface charge to reproduce the phase diagram for the charged suspension studied by Sirotaet al. @Phys. Rev.
Lett. 62, 1524~1989!#. With this fit parameter we are able to calculate the elastic moduli of the system and find
good agreement with the available data.
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Charged colloids have been the subject of intense st
Optical techniques can readily probe these systems and
are easily manipulated via chemical means@1–4#. Their rich
chemistry leads to many industrial applications ranging fr
uses in coating materials, in ceramic precursors, and in
signing and manufacturing biological macromolecul
These systems interact through a short-range scree
Coulomb potential and thus epitomize one of the few clas
of interactions in soft systems. In this Rapid Communicati
we replace the exact screened-Coulomb interaction betw
colloidal spheres with an effective interaction proportional
the surface area of the Wigner-Seitz or Voronoi cells t
contain each sphere. By balancing the entropic interac
that favors the close-packed face-centered-cubic~fcc! lattice
with the surface interaction which, as we will argue, favo
the body-centered-cubic~bcc! lattice, we will find the phase
coexistence line as a function of volume fraction and s
concentration. We deduce the surface charge on the sph
through the published data and, using this fitted value,
culate the shear moduli to find close agreement with exp
ment. Our model leads to quantitatively different results th
those found in molecular dynamics~MD! simulations@5# of
particles interacting via Yukawa interactions.

Several studies@1–3# provide a wealth of data on th
stability of colloidal phases, in particular, the fluid phase,
glass phase, and two solid phases with either fcc or bcc
tices. These systems are aqueous suspensions of unifo
charged polystyrene spheres with a variable salt concen
tion that is a control parameter for the degree of screenin
the underlying Coulomb interaction. Because the latt
spacing is large in the ordered phases, they can be probe
scattering of visible light@4#. Through scattering it is pos
sible to determine those volume fractions at which the ord
disorder transition occurs at low salt concentrations and
which the fcc-bcc transition occurs. Though densi
functional theory can successfully explain the phase diag
@6#, it has not been used to calculate shear moduli. Tho
the MD simulations@5# qualitatively corroborate these ex
perimental findings, one is hard pressed for similar quant
tive agreement between existing experimental data and s
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lation results. The lack of exact analytic methods with whi
to compare experiment or simulation further complicates t
problem. Thus theoretical models that distill the crucial a
pects of the interactions and lead to testable predictions
necessary.

Recently, a foam analogy was used to account for
many nonclosed-packed structures observed in colloidal
lyotropic systems@7#. In this analogy, the surface interactio
replaced the brushlike interaction between the spheres
accounted for the entropic degrees of freedom associ
with configurations of the soft coronas of alkyl chains a
tached to hard cores. Since the coronas prefer a packin
rangement that maximizes the average separation of
cores, lattices with small interfacial area are favored. F
example, the bcc lattice of orthic tetrakaidecahedra ha
smaller area than the fcc lattice of rhombic dodecahedra,
so the surface interaction favors the bcc lattice.

Here we apply the same framework to understand the
perimental phase diagram@8# and MD simulation results@5#
for charged colloidal systems. In particular, our mod
couples the bulk free energy of the charged hard cores to
free energy of their screened Coulomb interaction via
effective surface area. The model contains a single free
rameter: the surface charge associated with each collo
particle. Using experiment as our guide, we fit the surfa
charge to reproduce the phase diagram. In order to test
theory, we use the same surface charge to calculate the s
and bulk moduli and compare these with experiment a
simulation. We have found good agreement with the av
able data and, in doing so, demonstrate the plausibility
understanding the various experimental results of char
systems in terms of a geometrical principle already est
lished for another class of colloids.

A shortcoming of our model is that it can only includ
nearest-neighbor interactions. Therefore when the De
screening lengthk21 is comparable to or longer than th
interparticle spacinga our model should fail since it does no
take into account next-to-nearest-neighbor interactions.
deed, for small values ofl5ka, our model predicts negative
values for the bulk modulus. For larger values ofl the bulk
modulus becomes positive. Fortunately,l'4.64 for the data
on which we focus, well within the regime where next-t
nearest interactions are small. We have delineated the re
in which l<1 in Fig. 1. Our model also yields qualitativel
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different behavior for the relative magnitudes of the elas
constants in comparison to MD simulations@5#. We attribute
this difference to the finite size of the colloids—in the M
simulation they were treated as point particles and thus
not suffer entropic losses from excluded volume. We n
that there is a coexistence region between fcc and bcc, w
shrinks as the screening length shrinks. However, becaus
the very soft decay of the interaction, this coexistence reg
is quite narrow.

We also note that the shear modulus of the bcc lat
becomes negative at large values ofl. This signals the in-
stability of the bcc lattice and its transition to fcc: for largel
the screened-Coulomb potential becomes unimportant
the system should behave as if the interactions were pu
hard core. In this regime the fcc lattice is stable and
model could be used to calculate the elastic moduli. O
model is consistent with the recent experimental determ
tion @9# that the fcc lattice is the equilibrium phase f
samples withl.10. Moreover, in that study it was argue
that since Yukawa-like pair interactions could not account
both the elasticity of the crystal and the colloidal dynami
three-body and higher interactions must play an import
role. Since our approach is intrinsically many body, our
sults for the elastic constants as a function ofl are consistent
with that conclusion—we find behavior that cannot be e
plained by MD simulation of particles interacting v
Yukawa potentials. There have been alternative explanat
of this discrepancy based on hydrodynamic screening@10#.
We hope that our framework will allow for improved unde
standing of these issues.

In a colloidal suspension at fixed density, the volume
the container is the sum of the volume of the hard sphe
and the excess volume of the salt solution. Since this la
volume can be viewed as enveloping the individual sphe
we can imagine breaking up the volume into a lattice
Voronoi cells, each of which contains a colloidal particle.

FIG. 1. Theoretical fcc-bcc coexistence curve~solid line! as a
function of volume fractionf and electrolyte concentration~HCl!.
Above this line we would predict a fcc lattice and below it the b
lattice. The diamonds are the theoretical predictions, while the o
points come from the data of Ref.@8#. Solid squares are coexistenc
points, open triangles are fcc, and open circles are bcc. The fcc
coexistence region is too narrow to resolve in this diagram. T
region in the upper left is where the screening length is longer t
the interparticle spacing and our theory fails.
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A is the total area of these cells andd is their average thick-
ness, then the excess volumeAd is constant. Maximizingd
to reduce the repulsive interaction amounts to minimizingA
whence comes the interaction that favors bcc lattices~and the
more exoticA15 lattices@7,11#!. Since the crystal lattice is
composed of identical colloidal particles in cases of intere
the minimum area problem is equivalent to Kelvin’s proble
@12# of partitioning a given space into cells of equal volum
having the smallest interfacial area.

To compute the bulk free energy of the system, we follo
the method developed in Ref.@7# by adopting the cellular
free-volume theory. In this approximation, each particle
confined to a cage formed by its neighbors. The free volu
available to each particle’s center of mass is the volume
the Wigner-Seitz cell after a layer of thicknesss/2 ~wheres
is the hard-core diameter of particles! is peeled off of its
faces. Despite its mean-field nature, the free-volume the
yields excellent quantitative agreement with available n
merical simulations in the high-density limit and is rough
1% off above the hard-sphere fluid-solid transition. The u
of free-volume theory at the lower densities probed in
charged colloidal systems could be suspect. However as
as the shear elastic constants are nonzero, we expect th
‘‘Einstein-crystal’’ description of the phonon modes shou
be adequate. Indeed, we will find that appropriate moduli
nonzero in the density and salt concentration regime we
studying and therefore there are no ‘‘soft modes’’ that mig
strongly contribute to collective effects. The resulting bu
free energy for the fcc or bcc lattice is

Fbulk
X 52kBT ln@aX~bXn21/321!3#, ~1!

wheren5rs3 is the reduced density ands is the hard-core
diameter of each colloidal particle. The coefficientsa f cc

525/2 and abcc56.716 depend on the shape of the ce
whereasb f cc521/6 and bbcc5222/331/2 are determined by
their size.

To obtain the electrostatic energy between the char
spheres, we model their interaction as that between
charged flat plates using the Debye-Hu¨ckel approximation
@13# for a salt solution with counterions of chargeZe. We
replace each sphere with its Voronoi cell and then, in
Derjaguin-like approximation, replace the interaction with
interaction across parallel plates. The energy between
plates can be found via an electromagnetic potential sati
ing the linearized Poisson-Boltzmann equation. For the
perimental system in question we will show that this a
proximation is valid. Using linear superposition and t
solution for a single charged plate, we have@3#

Fc564AMkBTnbk
21 tanh2S 1

4
CsDexp~2kd!. ~2!

Taken together, Eqs.~1! and~2! encode the complete pictur
of the structural fcc-bcc transition in terms of the bulk cou
terion number densitynb , the dimensionless surface pote
tial of colloids Cs, the colloid densityn, and the Debye
screening lengthk215AekBT/2e2Z2nb, itself a function of
these control variables~wheree is the dielectric constant!. In
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order to relate the interaction energyFc to the reduced den
sity n, we relate the spacing of the charged plates to
density via the constraintAd5constant. The interparticle
separationd depends on the particle density,

AMd52S 1

n
2

p

6 Ds3, ~3!

where AM5gXs2n22/3, and g f cc55.345 andgbcc55.308
are dimensionless quantities characterizing the magnitud
area. Substitution of Eq.~3! into Eq. ~2! completes the ex-
pression for the interfacial free energy. Since the density
salt concentration are measurable parameters, the only
parameter is the surface potentialCs. It is therefore custom-
ary to treatCs as a parameter chosen for the best fit to
data@13#. From the surface potential we will be able to d
termine the net surface chargeq on the colloidal spheres.

Focusing on the structural phase transition from bcc
fcc, we rely on the x-ray scattering study of charged polys
rene spheres by Sirotaet al. @8#. That experiment studied th
phase diagram of polystyrene spheres in a 0.9-methanol–
water suspension. The thermodynamic behavior of this s
tem was recorded as a function of volume fractionf and salt
concentrationcHCl . In order to determine the surface pote
tial, we choose an fcc-bcc coexistence point in the exp
mental data, and then equate the corresponding fcc and
free energies to solve forCs. Through Gauss’s law
we calculate the charge per colloidq52AM

A2ekBTnb sinh(1
2 Cs). Finally, using this value of the

charge, we find the densityn at which F f cc/kBT and
Fbcc/kBT are equal for each salt concentrationnb . Due to
the limited data, there is only one experimental point at n
zero salt concentration that is in the coexistence region.
thus obtain the coexistence curve in the (f-nb) phase dia-
gram ~Fig. 1!. The relevant experimental data from Ref.@8#
are included for comparison.

Within our framework we find a surface potential ofCs
50.2, and so we were justified in linearizing the Poisso
Boltzmann equation. However, this potential correspond
a total charge of about 48e per colloidal particle. The value
of the charge is smaller than the quoted experimental va
of about 135e per sphere@8#, though it is comparable in
magnitude. The experimental value was actually determi
indirectly by measuring the shear modulus for the crystall
sample at 12% volume fraction@14#. Because of the uncer
tainty in the charge, we will make a direct comparison w
experiment by calculating the shear modulus of the bcc
tice using our cellular framework.

In general, the elastic energy of a cubic crystal has th
elastic constants,K11, K12, andK44 @15#:

Fcubic5
1

2E d3x@K11~uxx
2 1uyy

2 1uzz
2 !

1K12~uxxuyy1uxxuzz1uyyuzz!

12K44~uxy
2 1uxz

2 1uyz
2 !#. ~4!
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For a polycrystalline sample, the bulk modulusK5(K11

12K12)/3 is an isotropic quantity. On the other hand, t
shear modulus depends on the direction of the applied s
and ranges from the shear along the fourfold axism5K11
2K12/2 to the shear along the face diagonalK44. We deter-
mine the three elastic constants by calculating the free
ume and the change in surface area for a deformed bcc
tice. The free volume was found via a simple numeric
scheme while the change in surface area was found with
aid of Surface Evolver@16#. Equating the continuum energ
change from Eq.~4! with the energy change within ou
framework, we find that K11'17.1 N/m2, K12
'21.2 N/m3, and K44'10.3 N/m2 for a 12% volume-
fraction (n50.23) bcc sample. Thus the shear modu
ranges from 10.3 to 17.7 N/m2. Again this is the same orde
of magnitude as the measured, isotropic value of 17 N2

@8#, which is a complicated combination of the two she
moduli. We have calculated these moduli using an HCl c
centration of 50mmol, as this is in the middle of the re
ported bcc regime@8#.

In order to compare with MD simulations@5#, we tabulate
~Table I! values of the bulk modulus and the three elas
constants as a function ofl5ka ~in the experimental study
l'4.64). However, unlike point particles with Yukawa in
teractions, our model does not scale simply with this para
eter. To varyl, we keep the colloidal density fixed as well a
the total charge on each colloid. Varying the salt concen
tion changes bothk and the surface potentialCs. With these
new values we can recalculate the elastic constants. For c
pleteness, we tabulate the values of the bulk modulusK and
elastic constants of the bcc structure atf50.12 for different
values ofl5ka ~wherea is the mean separation of sphere
at n50.23, a'140 nm).

While our framework assigns a surface charge that
smaller than the value suggested in the original analysis@8#,
it is in fact quite common for the effective charge to b
reduced when compared with the net or titratable charge
calculate the renormalized chargeZ* and acid concentration
nHCl* , Alexander et al. @17# employed a Wigner-Seitz ap
proximation similar in principle to our way of determinin
the bulk free energies of the various lattices. Their meth
relies on the fact that in interstitial regions, which occupy

TABLE I. Calculated values for the bulk modulusK and elastic
constants of the bcc structure at several values ofl5ka, wherea is
the average interparticle spacing, forn50.23 ~first number! andn
50.50 ~second number!. All values are in units of N/m2.

l K K11 K12 K44

1 226.1u 27.59 17.5u 10.7 247.9u 216.7 54.4u 28.4
2 27.54u 13.8 19.0u 18.4 221.1u 11.6 29.1u 15.6
3 0.12u 22.3 19.7u 21.4 29.67u 22.7 18.3u 10.6
4 3.66u 26.2 18.4u 22.4 23.71u 28.0 12.7u 7.95
5 5.37u 28.0 16.6u 22.5 20.22u 30.7 9.40u 6.40
6 6.16u 28.6 14.5u 22.0 2.00u 32.0 7.30u 5.43
7 6.46u 28.7 12.5u 21.1 3.40u 32.5 5.90u 4.70
8 6.49u 28.5 10.6u 20.3 4.42u 32.6 5.00u 4.30
1-3
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large fraction of the system, the potentialC is relatively
uniform and changes abruptly in a boundary layer near
colloidal surfaces. As a result, the counterions are m
tightly constrained to locations near the surfaces of th
colloidal particles, and one can reinterpret these ions as
of an effective sphere with a reduced charge. Again, si
neither the effective charge nor the local ion concentrat
can be measured directly in experiments, the precise co
mation of theory has proven difficult. Because our mo
allows the simultaneous prediction of the phase bound
and the shear moduli, we can avoid these uncertainties.

There are, of course, additional interactions that we h
neglected. The van der Waals attraction is much weaker
the screened-Coulomb potential at the interparticle spa
of a'140 nm. We expect that correlation effects such
overcharging should have minimal consequence in a sys
of monovalent salt ions of NaCl@18#. Dispersion forces are
important at ion concentrations greater than 100mmol @19#.
However, this effect occurs at distance scales on the orde
10 mm, and we do not expect this to change our model.

Finally, we noted that in the calculation of the bulk fre
energy, we employed free-volume theory even in the re
tively low-particle-density regime—a regime in which pu
hard-core interactions would predict a fluid phase. Howe
the screened-Coulomb potential stabilizes the lattice st
tures and, in turn, lowers the melting density of the syste
This manifests itself in the moduli—our model predicts sh
ce
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moduli on the order of the bulk moduli in the experimen
regime of interest. We therefore believe that there are no
modes that would allow for large deformations of the lattic
One could characterize the system with an effective den
of higher magnitude, determined by the Barker-Hender
effective diameter of particles@13#. A scheme like this would
introduce another parameter into our model, which wo
divide the screened-Coulomb potential into a ‘‘hard’’ pa
and a ‘‘soft’’ part.

We have established a geometrical framework for und
standing the structural and mechanical properties of char
colloids. We have connected the phase diagram to the ela
moduli of the system with only one adjustable parameter,
surface charge. The balance between the drive of the
tem’s entropy for maximal packing fraction and the need
its screened repulsion for minimal interfacial area accou
for most of the properties found in experiments. Its elucid
tion can serve as an intuitive guide to the engineering
charged systems.
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