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Foam analogy in charged colloidal crystals
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We model charged colloidal suspensions using an analogy with foams. We study the solid-solid phase
transitions of these systems as a function of particle volume fraction and ionic strength. The screened-Coulomb
interaction is replaced by an interaction between walls of the Voronoi cells around each particle. We fit the
surface charge to reproduce the phase diagram for the charged suspension studied by &ifd?ays. Rev.

Lett. 62, 1524(1989]. With this fit parameter we are able to calculate the elastic moduli of the system and find
good agreement with the available data.
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Charged colloids have been the subject of intense studyation results. The lack of exact analytic methods with which
Optical techniques can readily probe these systems and théy compare experiment or simulation further complicates this
are easily manipulated via chemical mefhs4]. Their rich  problem. Thus theoretical models that distill the crucial as-
chemistry leads to many industrial applications ranging frompects of the interactions and lead to testable predictions are
uses in coating materials, in ceramic precursors, and in derecessary.
signing and manufacturing biological macromolecules. Recently, a foam analogy was used to account for the
These systems interact through a short-range screenedhany nonclosed-packed structures observed in colloidal and
Coulomb potential and thus epitomize one of the few classelyotropic system¢7]. In this analogy, the surface interaction
of interactions in soft systems. In this Rapid Communicationyeplaced the brushlike interaction between the spheres and
we replace the exact screened-Coulomb interaction betweertcounted for the entropic degrees of freedom associated
colloidal spheres with an effective interaction proportional towith configurations of the soft coronas of alkyl chains at-
the surface area of the Wigner-Seitz or Voronoi cells thatached to hard cores. Since the coronas prefer a packing ar-
contain each sphere. By balancing the entropic interactionangement that maximizes the average separation of the
that favors the close-packed face-centered-c(fior) lattice ~ cores, lattices with small interfacial area are favored. For
with the surface interaction which, as we will argue, favorsexample, the bcc lattice of orthic tetrakaidecahedra has a
the body-centered-cubibco) lattice, we will find the phase smaller area than the fcc lattice of rhombic dodecahedra, and
coexistence line as a function of volume fraction and saliso the surface interaction favors the bcc lattice.
concentration. We deduce the surface charge on the spheresHere we apply the same framework to understand the ex-
through the published data and, using this fitted value, calperimental phase diagraf8] and MD simulation result§5]
culate the shear moduli to find close agreement with experifor charged colloidal systems. In particular, our model
ment. Our model leads to quantitatively different results tharcouples the bulk free energy of the charged hard cores to the
those found in molecular dynami¢sID) simulations[5] of ~ free energy of their screened Coulomb interaction via the
particles interacting via Yukawa interactions. effective surface area. The model contains a single free pa-

Several studie$1-3] provide a wealth of data on the rameter: the surface charge associated with each colloidal
stability of colloidal phases, in particular, the fluid phase, theparticle. Using experiment as our guide, we fit the surface
glass phase, and two solid phases with either fcc or bcc lasharge to reproduce the phase diagram. In order to test our
tices. These systems are aqueous suspensions of uniforntlyeory, we use the same surface charge to calculate the shear
charged polystyrene spheres with a variable salt concentrand bulk moduli and compare these with experiment and
tion that is a control parameter for the degree of screening asimulation. We have found good agreement with the avail-
the underlying Coulomb interaction. Because the latticeable data and, in doing so, demonstrate the plausibility of
spacing is large in the ordered phases, they can be probed byderstanding the various experimental results of charged
scattering of visible ligh{4]. Through scattering it is pos- systems in terms of a geometrical principle already estab-
sible to determine those volume fractions at which the orderlished for another class of colloids.
disorder transition occurs at low salt concentrations and at A shortcoming of our model is that it can only include
which the fcc-bcec transition occurs. Though density-nearest-neighbor interactions. Therefore when the Debye
functional theory can successfully explain the phase diagraracreening length« ! is comparable to or longer than the
[6], it has not been used to calculate shear moduli. Thougiterparticle spacing our model should fail since it does not
the MD simulations[5] qualitatively corroborate these ex- take into account next-to-nearest-neighbor interactions. In-
perimental findings, one is hard pressed for similar quantitadeed, for small values of = ka, our model predicts negative
tive agreement between existing experimental data and simwalues for the bulk modulus. For larger valueshothe bulk

modulus becomes positive. Fortunatelyy 4.64 for the data
on which we focus, well within the regime where next-to-
*Permanent address: J. Stefan Institute, Jamova 39, Sl-100@earest interactions are small. We have delineated the region
Ljubljana, Slovenia. in whichA=<1 in Fig. 1. Our model also yields qualitatively
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35 / A'is the total area of these cells adds their average thick-
g 30 / A ness, then the excess volurAe is constant. Maximizingl
B Ka<l Il to reduce the repulsive interaction amounts to minimizng
Q TANNN ; ;
£ 25 / N whence comes the interaction that favors bcc lattiaes the
L:") 20 A 8 more exoticAl5 lattices[7,11]). Since the crystal lattice is
g i / composed of identical colloidal particles in cases of interest,
—g 15 / the minimum area problem is equivalent to Kelvin’s problem
> 10 O/J o [12] of partitioning a given space into cells of equal volumes
o) having the smallest interfacial area.
5 // To compute the bulk free energy of the system, we follow

0 100 200 300 200 500 the method developed in' Rdf7] by adqpting the cellylar '
free-volume theory. In this approximation, each particle is
confined to a cage formed by its neighbors. The free volume
FIG. 1. Theoretical fcc-bee coexistence curglid ling) as a  available to each particle’s center of mass is the volume of
function of volume fractionp and electrolyte concentratiqhiCl).  the Wigner-Seitz cell after a layer of thicknes£2 (whereo
Above this line we would predict a fcc lattice and below it the becis the hard-core diameter of particleis peeled off of its
lattice. The diamonds are the theoretical predictions, while the othefaces. Despite its mean-field nature, the free-volume theory
points come from the data of R¢8]. Solid squares are coexistence yields excellent quantitative agreement with available nu-
points, open triangles are fcc, and open circles are bee. The fce-bamerical simulations in the high-density limit and is roughly
coexistence region is too narrow to resolve in this diagram. Thel% off above the hard-sphere fluid-solid transition. The use
region in the upper left is where the screening length is longer thapf free-volume theory at the lower densities probed in the
the interparticle spacing and our theory fails. charged colloidal systems could be suspect. However as long
as the shear elastic constants are nonzero, we expect that an

different behavior for the relative magnitudes of the elastic Einstein-crystal” description of the phonon modes should
constants in comparison to MD simulatiof&. We attribute ~ be adequate. Indeed, we will find that appropriate moduli are
this difference to the finite size of the colloids—in the MD honzero in the density and salt concentration regime we are
simulation they were treated as point particles and thus digtudying and therefore there are no “soft modes” that might
not suffer entropic losses from excluded volume. We notestrongly contribute to collective effects. The resulting bulk
that there is a coexistence region between fcc and bee, whidkhee energy for the fcc or bee lattice is

shrinks as the screening length shrinks. However, because of X X X1 i3

the very soft decay of the interaction, this coexistence region Fouk= —KeTIn[a™(B"n"""=1)"], 1

iS quite narrow.

We also note that the shear modulus of the bcc latticavheren=pa® is the reduced density andis the hard-core
becomes negative at large values\ofThis signals the in- dlargéater of beach colloidal particle. The coefficients™
stability of the bcc lattice and its transition to fcc: for lage =2~ and a”*°=6.716 depend on the shape of the cells,
the screened-Coulomb potential becomes unimportant anthereasp’®°=2"® and g*°°=272°3'2 are determined by
the system should behave as if the interactions were purefjpeir size. _
hard core. In this regime the fcc lattice is stable and our TO obtain the electrostatic energy between the charged
model could be used to calculate the elastic moduli. OusPheres, we model their interaction as that between two
model is consistent with the recent experimental determinacharged flat plates using the DebyedKal approximation
tion [9] that the fcc lattice is the equilibrium phase for [13] for a salt solution with counterions of charge. We
samples withh >10. Moreover, in that study it was argued replace each sphere with its Voronoi cell and then, in a
that since Yukawa-like pair interactions could not account forPerjiaguin-like approximation, replace the interaction with an
both the elasticity of the crystal and the colloidal dynamics,interaction across parallel plates. The energy between two
three-body and higher interactions must play an importanplates can be found via an electromagnetic potential satisfy-
role. Since our approach is intrinsically many body, our re-ing the linearized Poisson-Boltzmann equation. For the ex-
sults for the elastic constants as a function afre consistent Perimental system in question we will show that this ap-
with that conclusion—we find behavior that cannot be ex-Proximation is valid. Using linear superposition and the
plained by MD simulation of particles interacting via Solution for a single charged plate, we hd¢
Yukawa potentials. There have been alternative explanations
of this discrepancy based on hydrodynamic screehir. _ -1
We hope that our framework will allow for improved under- Fo=64Auka TNy tani?
standing of these issues.

In a colloidal suspension at fixed density, the volume ofTaken together, Eq¢l) and(2) encode the complete picture
the container is the sum of the volume of the hard spheresf the structural fcc-bcce transition in terms of the bulk coun-
and the excess volume of the salt solution. Since this latteterion number density,, the dimensionless surface poten-
volume can be viewed as enveloping the individual spheredjal of colloids V¥, the colloid densityn, and the Debye
we can imagine breaking up the volume into a lattice ofscreening lengthc ~1= \ekgT/2e%Z?n,,, itself a function of
Voronoi cells, each of which contains a colloidal particle. If these control variable@vheree is the dielectric constantin

Concentration of HCI in micromoles

exp(— kd). (2)

1
2 Vs
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Order to re'ate the interaction enerEx to the reduced den_ TABLE I. Calculated values for the bulk modulsand elastic
sity n, we relate the spacing of the charged plates to th&onstants of t_he bcec §tructure gt several valu_es=of<a, wherea is

density via the constrainAd=constant. The interparticle the average interparticle spacing, f!mt_O.23 {flrst numbe) andn

separatiord depends on the particle density, =0.50 (second numberAll values are in units of N/rh

A K Ku Kz Kaa

1 =
Ayd=2 P

5 o3 (3) 1 -26.1|-759 17.5107 —47.9|-16.7 54.428.4

2 —7.54/13.8 19.0184 —21.1|11.6 29.115.6

3 0.12/223 19.721.4 —9.67|22.7 18.310.6
where Ay=y*o?n"?3 and y'°°=5.345 andy"°°=5.308 4  3.66/26.2 184224 —-3.71/28.0 12.77.95
are dimensionless quantities characterizing the magnitude &  5.37|28.0 16.622.5 —0.22|30.7 9.40 6.40
area. Substitution of E(3) into Eq. (2) completes the ex- 6  6.16/28.6 14.522.0 2.00 32.0 7.305.43
pression for the interfacial free energy. Since the density and  6.46|28.7 12.5921.1 3.40 325 5.90 4.70
salt concentration are measurable parameters, the only frge  6.49| 28.5 10.620.3 4.4232.6 5.004.30
parameter is the surface potential. It is therefore custom-
ary to treat¥ as a parameter chosen for the best fit to the

data[13]. From the surface potential we will be able to de- For a polycrystalline sample, the bulk modulés= (K,

termine the net srt:rface chargleorr]] the °°”°"?'?" spf)heresb. +2K,)/3 is an isotropic quantity. On the other hand, the
fch\(/)vCeurSgI]fo?lnthte?(-f;r;(s:tcuartatler?ngssﬁugigilgﬁgrgreo dmpolc):/gtyt/(-)Shear modulus depends on the direction of the applied shear

' ; ) : and ranges from the shear along the fourfold gxis K,
rene spheres by Sirot al.[8]. That experiment studied the K2 to the shear along the face diagokal,. We deter-
phase diagram of polystyrene spheres in a 0.9-methanol—0.1-. % 9 g :

water suspension. The thermodynamic behavior of this Sysr:nlne the three elastic constants by calculating the free vol-

tem was recorded as a function of volume fractiband salt ume and the change in surface area for a deformed bcc lat-

concentratiorc In order to determine the surface poten tice. The free volume was found via a simple numerical
. Hel - X - P .scheme while the change in surface area was found with the
tial, we choose an fcc-bcec coexistence point in the experi-

. aid of Surface Evolvef16]. Equating the continuum ener
mental data, and then equate the corresponding fcc and b%ﬁange from Eq.(4) \Evitg th?e enegr]gy change within og)r/
free energies to solve folVg. Through Gauss's law, '

we calculate the charge per colloidg=2A, framework, we find that Kj,~17.1 Ninf, K,

o ) _ _ ~—1.2 N/n?, and K,4~10.3 N/nf for a 12% volume-
V2ekgTny, sinh(GWy). Finally, using this :/alue of the fraction (1=0.23) bcc sample. Thus the shear modulus
charge, we find the density at which F'°“/kgT and

o . ranges from 10.3 to 17.7 NAnAgain this is the same order
F>*7kgT are equal for each salt concentratiop. Due 10  of magnitude as the measured, isotropic value of 17 2N/m
the limited data, there is only one experimental point at non 8], which is a complicated combination of the two shear
zero salt concentration that is in the coexistence region. Wg,oduli. We have calculated these moduli using an HCI con-
thus obtain the coexistence curve in thg-ify) phase dia-  centration of 50xmol, as this is in the middle of the re-
gram (Fig. 1). The relevant experimental data from Ri] ported bcc regimés].
are included for comparison. . In order to compare with MD simulatiori§], we tabulate
Within our framework we find a surface potential s (Taple |) values of the bulk modulus and the three elastic
=0.2, and so we were justified in linearizing the Poissononstants as a function af= xa (in the experimental study,
Boltzmann equation. However, thi; potentigl corresponds t9\~4.64). However, unlike point particles with Yukawa in-
a total charge of about 48per colloidal particle. The value teractions, our model does not scale simply with this param-
of the charge is smaller than the quoted experimental valugter, To vary\, we keep the colloidal density fixed as well as
of about 13%& per sphere[8], though it is comparable in the total charge on each colloid. Varying the salt concentra-
magnitude. The experimental value was actually determineggp, changes botlk and the surface potentidi. With these
indirectly by measuring the shear modulus for the crystalling,e values we can recalculate the elastic constants. For com-
sample at 12% volume fractidi4]. Because of the uncer- pleteness, we tabulate the values of the bulk modilasd
tainty in the charge, we will make a direct comparison withg|astic constants of the bcc structuredat 0.12 for different
experiment by calculating the shear modulus of the bcc latyg)yes of\ = xa (wherea is the mean separation of spheres;

tice using our cellular framework. atn=0.23,a~140 nm).
In general, the elastic energy of a cubic crystal has three \yhijle our framework assigns a surface charge that is
elastic constantsy, Kip, andKy, [15]: smaller than the value suggested in the original analfis

it is in fact quite common for the effective charge to be

1 reduced when compared with the net or titratable charge. To
Fcubic=§f d3x[K11(ufx+ u§y+ u?z) calculate the renormalized chargé and acid concentration
nfci, Alexanderet al. [17] employed a Wigner-Seitz ap-
+ K 12 UgyUyy T Uyl 4 Uyy U ) proximation similar in principle to our way of determining

5 . the bulk free energies of the various lattices. Their method

+ 2K gq(Uyy+ Ui+ UG, | (4) relies on the fact that in interstitial regions, which occupy a
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large fraction of the system, the potentidll is relatively moduli on the order of the bulk moduli in the experimental
uniform and changes abruptly in a boundary layer near theegime of interest. We therefore believe that there are no soft
colloidal surfaces. As a result, the counterions are morenodes that would allow for large deformations of the lattice.
tightly constrained to locations near the surfaces of thes®ne could characterize the system with an effective density
colloidal particles, and one can reinterpret these ions as paof higher magnitude, determined by the Barker-Henderson
of an effective sphere with a reduced charge. Again, sinceffective diameter of particlg4.3]. A scheme like this would
neither the effective charge nor the local ion concentrationntroduce another parameter into our model, which would
can be measured directly in experiments, the precise confidivide the screened-Coulomb potential into a “hard” part
mation of theory has proven difficult. Because our modeland a “soft” part.
allows the simultaneous prediction of the phase boundary We have established a geometrical framework for under-
and the shear moduli, we can avoid these uncertainties. standing the structural and mechanical properties of charged
There are, of course, additional interactions that we haveolloids. We have connected the phase diagram to the elastic
neglected. The van der Waals attraction is much weaker thamoduli of the system with only one adjustable parameter, the
the screened-Coulomb potential at the interparticle spacingurface charge. The balance between the drive of the sys-
of a~140 nm. We expect that correlation effects such agem’s entropy for maximal packing fraction and the need of
overcharging should have minimal consequence in a systeiits screened repulsion for minimal interfacial area accounts
of monovalent salt ions of Na(LL8]. Dispersion forces are for most of the properties found in experiments. Its elucida-
important at ion concentrations greater than 10ol [19]. tion can serve as an intuitive guide to the engineering of
However, this effect occurs at distance scales on the order @harged systems.
10 um, and we do not expect this to change our model. We gratefully acknowledge stimulating conversations
Finally, we noted that in the calculation of the bulk free with T. C. Lubensky, T. R. Powers, M. O. Robbins, D. A.
energy, we employed free-volume theory even in the relaWeitz, and A. G. Yodh. This work was supported by NSF
tively low-particle-density regime—a regime in which pure Grant No. DMR01-29804, the Donors of the Petroleum Re-
hard-core interactions would predict a fluid phase. Howeversearch Fund, administered by the American Chemical Soci-
the screened-Coulomb potential stabilizes the lattice strucety, the University of Pennsylvania Research Foundation,
tures and, in turn, lowers the melting density of the systemand a gift from L. J. Bernstein. R.D.K. was also supported by
This manifests itself in the moduli—our model predicts sheatthe Alfred P. Sloan Foundation.
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